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Flow separation from a stationary meniscus
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We consider the steady flow near a free surface at intermediate to high Reynolds
numbers, both experimentally and theoretically. In our experiment, an axisymmetric
capillary meniscus is suspended from a cylindrical tube, held slightly above a
horizontal water surface. A flow of dyed water is released through the tube into
the reservoir, and flow lines are thus recorded. At low Reynolds numbers, flow lines
follow the free surface, and injected water spreads horizontally inside the container.
Increasing the Reynolds number, the injected fluid penetrates to a certain distance
into the bath, but ultimately follows the free surface. Above a critical Reynolds
number of approximately 60, the flow separates from the free surface in the meniscus
region and a jet projects vertically into the bath. We find no indication that the
flow reattaches at higher Reynolds numbers, nor are our findings sensitive to surface
contamination. We show theoretically and confirm experimentally that the separating
streamline forms a right angle with the free surface.

1. Introduction
If one solves for inviscid irrotational flow with either solid or free surfaces,

streamlines remain attached to the surface. However, these solutions do not obey
the correct boundary conditions for viscous flow at the surface, even if the viscosity is
small. As a result, in the limit of small viscosity, a thin boundary layer forms. In the
case of a solid body, this is one of the most widely studied problems in fluid mechanics.
It is well known that at high Reynolds numbers the boundary layer will detach from
the body, and streamlines that followed the surface enter the flow (Schlichting 1987;
Smith 1986; Sychev et al. 1998). This fact has profound consequences for the nature
of the flow, like the lift and the viscous drag on the body, the stability of the flow
and the generation of vorticity.

By comparison, very little is known about separation from a free surface, and there
is little accepted theory beyond the discussion found in the classical textbook by
Batchelor (1967), but see Leal (1989) for a progress report. Based on the description
of unseparated free-surface boundary layer flow (Moore 1963; Harper & Moore 1968;
Harper 1972), the main conclusion is that separation is much less likely to occur from
free boundaries than from solid ones. In particular, in the limit of high Reynolds
numbers the flow is predicted to always remain attached to the free surface. This
statement has been confirmed by numerical simulations of flow around ‘bubbles’ of
fixed ellipsoidal shape (Dandy & Leal 1986; Blanco & Magnaudet 1995). It is found
that first a separation bubble forms at a lower critical Reynolds number Re1, but the
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Figure 1. Schematic of the experimental set-up and the different regimes observed.

flow later reattaches at a second, higher critical Reynolds number Re2. The upper value
Re2, in particular, increases rapidly with the aspect ratio χ of the ellipsoidal bubble.

In spite of these theoretical results, it is clear that, in practice, separation from a
free surface is very prevalent over a wide range and including very high Reynolds
numbers. For example, ‘scars’ that are formed on a free surface (Brocchini & Peregrine
2001a ,b) point to the existence of streamlines leaving the free surface. Other indirect
evidence is provided by the air that is entrained into the fluid, even at high Reynolds
number (Lin & Donnelly 1966; Bin 1993). Another example is the instability of gas
bubbles rising in water, for which the existence of a separated wake behind the bubble
is a prerequisite (Magnaudet & Mougin 2007; Zenit & Magnaudet 2008). As pointed
out by Zenit & Magnaudet (2008), one important reason why the flow stays separated
at high flow speeds is that the free surface deforms so as to promote separation. For
example, a rising bubble becomes increasingly flat at higher rise speeds, so that the
Reynolds number remains well below the critical value Re2 for the flat bubble, which
has a large χ .

In this paper, we use the steady flow through a capillary meniscus to investigate
flow separation from a free surface. This permits to study the flow geometry near
a free surface over a wide range of Reynolds numbers. Meanwhile, the shape of
the meniscus remains relatively undisturbed, so we are in a position to look at the
transition from unseparated to separated flow, just using the Reynolds number as
a single parameter. We are not aware of any previous experimental study that has
looked at this transition, or at the flow geometry close to the point of separation.
In the following section, we introduce the meniscus flow experiment, and describe
the transition to separated flow as the flow rate is increased. We show that the flow
geometry is controlled by the Reynolds number alone. In the next section we show
theoretically that the flow at separation is a stagnation point flow. This is confirmed
experimentally by showing that flow lines leave the free surface at a right angle. In
the case of solid boundaries, by contrast, separation occurs tangentially in the limit
of large Re (Smith 1986).

2. Meniscus flow experiment
A schematic of the experimental set-up is shown in figure 1. Water is injected

from a flexible tube of radius R into a glass box (10 cm × 10 cm × 10 cm) filled with
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Figure 2. Photographs of the experiment, for flow rates Q = 0.06 cm3 s−1, 0.27 cm3 s−1

and 2.46 cm3 s−1, which correspond to Re = 4.8, 21.5 and 198. The Weber numbers are
We = 8 × 10−4, 1.6 × 10−3 and 0.14. (a) The free surface is shown from below to show the
horizontal spreading. For the intermediate flow rate, a blob of depth d = 1.6 cm is formed, but
the flow ultimately spreads. (c) the flow detaches from the highly curved meniscus at a right
angle to form a jet.

water. A capillary meniscus is produced by first dipping the tube into the water,
and then withdrawing it carefully. Normally this is done to produce the greatest
possible elevation of the tube h for which the meniscus is still stable. However, we
also performed some experiments with smaller values of h.

The fluid is injected at a constant rate, and is allowed to overflow, ensuring a
stationary situation. The flow is driven by the constant pressure head between the
container and a reservoir, which is fed by a pump and is overflowing as well. This
guarantees a constant flow rate and minimal perturbations to the flow. For each
experiment, we allowed for several minutes for the flow to reach a stationary state.
We then injected carefully a small amount of ink into the tube close to its opening.
Great care was taken for the ink to have the same density as the water; the difference
is less than two parts in 1000. As the coloured water spreads, a sharp boundary
between the moving fluid coming from the pipe (dark) and the almost quiescent fluid
in the container (light) becomes visible (figure 2).

At low flow rate Q, the coloured water spreads along the surface, remaining
confined to a thin surface layer (figure 2a). At moderate flow rate, the coloured
water still spreads on the surface, but the flow penetrates the stagnant water under
the injection tube, leading to formation of a ‘blob’ (figure 2b). At high flow rate, the
coloured region is confined to a jet penetrating the stagnant water, while the horizontal
surface remains clear. A streamline that was once following the free surface leaves
the free surface at a stagnation point and subsequently marks the boundary of the
jet (figure 2c).

As we will see below, the most significant dimensionless control parameter
responsible for the appearance of the flow is the Reynolds number Re ≡ RU/ν =
Q/(πνR), where ν is the kinematic viscosity of the fluid (ν = 1 mm2 s−1 for water).
Another dimensionless control parameter is the Weber number We= ρRU 2/γ =
ρQ2/(π2R3γ ), where γ is the surface tension and ρ the density. Even for the highest
flow rate shown in figure 2, We is only 0.14, indicating that inertial forces are small
compared to surface tension, and the free surface shape should thus be close to that
of a static capillary meniscus. The geometrical parameter h/R based on the elevation
h is also found to be of little significance, see below.

To investigate the transition between the spreading regime and the jet regime more
quantitatively, we measure the maximum depth d of the blob as function of flow
rate for three different tube radii, as shown in figure 3(a). It is observed that d

increases sharply with increasing flow rate. For each radius, the largest d corresponds
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Figure 3. The depth of the ‘blob’ as function of flow rate for different radii of the injection
tube. (a) The raw data for three different tube radii. The error bars are based on several
realizations of the same experiment; the reproducibility of the experiment is usually to within
20%. (b) Same data are plotted as function of Reynolds number, and are seen to collapse to
within the error.

to the highest flow rate for which an attached flow was possible. For higher flow
rates (whose value depends on R), the flow was always separated. The same data
are presented in figure 3(b), but as function of the Reynolds number; the depth d is
made dimensionless with the capillary length �c =

√
γ /(ρg). The latter is a relevant

length scale for the blob since it measures the curvature of the meniscus, and thus
the curvature of streamlines as they pass from the tube to horizontal spreading. It is
found that within the experimental uncertainty all data collapse onto a single curve,
confirming the Reynolds number as the relevant control parameter.

The collapsed data set contains no point corresponding to attached flow above
Re = 60 (figure 3b). Moreover, the data are consistent with a second-order transition,
that is, with a diverging d as a critical Reynolds number Rec ≈ 60 is approached. This
would correspond to a smooth transition of, say, 1/d towards its vanishing value as
the jet is established. However, there is too much scatter as to be sure about this, and
the true curve may well extrapolate to a finite value of d at Re = 60, corresponding
to a discontinuous or first-order transition.

A possible interpretation of this latter scenario would be that there exists a flow
solution which remains attached above Re =60. However, this solution might become
unstable at some finite Reynolds number (60 in our case), owing to small perturbations
such as surface impurities or perturbations from the inlet. We also considered possible
reattachment of flow lines at even higher Reynolds numbers, which is expected on
theoretical grounds (Batchelor 1967, p. 364), in the case of a fixed free surface shape.
However, we found no evidence for reattachment for Reynolds numbers up to 5500,
which is the highest our set-up allows. Thus, at least for a real air–water interface,
the theoretical argument seems to be of little practical significance. Whatever be the
case, note that a typical Reynolds number for jet formation is far lower in the case of
separation from a solid boundary. For example, if fluid is injected through an orifice
in a solid wall, a jet is formed above Re ≈ 5, depending on the sharpness of the
orifice’s corner (Birkhoff & Zarantonello 1957, p. 274).
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Figure 4. The depth of the ‘blob’ as function of flow rate for different meniscus heights.
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Figure 5. A sketch of the likely geometry of the flow in the case of a blob.

Another issue we considered was the characteristic length scale that determines
the penetration depth d . All the results shown previously have been obtained with
the biggest obtainable height of meniscus (h ∼ 5 mm). To study the influence of
this height, we have performed experiments with different meniscus sizes, using the
narrowest tube R = 2 mm. As seen in figure 4, we cannot detect a significant influence
on the depth of the blob. As shown in the previous figure 3, the same is true for the
tube radius as well, leaving �c as the most likely parameter. Of course, the capillary
length is a difficult parameter to vary, so we do not possess positive confirmation that
the data will collapse when plotting d/�c.

In closing this section, we present a cartoon of how flow lines are likely to look
in the case of a blob, for which separation has not yet occurred, cf. figure 5. As a
result, one flowline must follow the free surface, drawn as a bold line. On the other
hand, a flow line just off the centre must be close to the stagnation at the bottom of
the blob, and must subsequently trace the lower boundary of the blob. All flow lines
will eventually end up in a thin layer close to the free surface. It would of course
be desirable to measure the flow lines in the interior of the flow directly, but this is
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Figure 6. Examples of the flow near separation from a free surface. (a) A closeup of the
meniscus region, taken from one of our experiments. The parameters are Q = 1.6 cm3 s−1,
Re = 127 and We =0.056, for which we observe separated flow. (b) One quadrant of a numerical
simulation of the two-dimensional flow around an elliptical obstacle (‘bubble’) with free slip
boundary condition (Blanco & Magnaudet 1995). The aspect ratio of the ellipse is χ = 1.75,
and Re = 100, based on the major axis. In both cases, the flow is seen to separate at a right
angle.

not easy without perturbing the free surface substantially be the presence of tracer
particles.

3. Analysis of separation
We now focus on the neighbourhood of the point of separation, as seen in the two

examples of figure 6. The flow separates from the free surface in the highly curved
meniscus region at a right angle, as first shown by Lugt (1987). This fact is a simple
consequence of the boundary condition at the free surface, which is stress free. We
also assume that the flow is stationary, so the normal velocity at the surface vanishes
as well. In general, a potential flow will not obey the free stress condition, so the
derivation relies on the fluid being viscous, although the flow equations themselves
are not required.

In the following, for simplicity we are going to restrict ourselves to two-dimensional
flow. This does not represent any loss of generality, since the third dimension can be
taken in the direction of the line of separation. As shown in figure 7, we approximate
the free surface to second order by an inscribed circle of radius R, where κ = R−1 is
the curvature of the intersection of the free surface with the plane of the flow. Using
polar coordinates (r, φ), the free surface is given locally by the coordinate line r = R.
Then from the free-surface boundary condition the vanishing component of the stress
tensor σ is given by

σrφ = νρ

[
κ

∂ur

∂φ
+

∂uφ

∂r
− κuφ

]
= 0, (3.1)

and the (two-dimensional) vorticity is

ω = κ
∂ur

∂φ
− ∂uφ

∂r
− κuφ, (3.2)

where we have used r ≈ R.
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Figure 7. The local coordinate system and geometry of a flow near a point of separation
from a free surface.

Since the interface is stationary, we have ur = 0 for r = R and thus ∂ur/∂φ = 0
near the surface. Combining (3.1) and (3.2), we obtain the well-known relationship
(Batchelor 1967):

ω = −2κuφ, (3.3)

between the vorticity on the surface and the curvature of the interface. The physical
interpretation of (3.3) is clarified by expanding the local velocity field near the surface:

δur/φ =
∂ur/φ

∂r
δr +

∂ur/φ

∂φ
δφ. (3.4)

Using (3.1) and (3.3), we have

∂uφ

∂r
= κuφ = −ω

2
. (3.5)

With this relation as well as incompressibility, (3.4) can be simplified to

δur = kδr, δuφ = −kRδφ − ω

2
δr, (3.6)

where k = ∂ur/∂r is the local strain rate.
Equation (3.6) implies that the flow near the free surface (shaded region in figure 7)

is a superposition of a straining flow and a free body rotation. The reason is that
a fluid element is free of shear stress, so up to a straining motion the fluid element
is in solid body rotation (cf. Longuet-Higgins 1992). But at the stagnation point
uφ = 0, so ω vanishes as well according to (3.3). This means that (3.6) simplifies to
an irrotational stagnation point flow (cf. figure 7), which in a Cartesian coordinate
system centred at the point of separation is

u = −kx, v = ky. (3.7)

Here x is reckoned in the tangential flow direction, and is y normal to it. Equation
(3.7) also implies that the separating streamline leaves the free surface at a right angle.
This is geometrically obvious, since the local speed of rotation changes sign at the
stagnation point. The only possible exception is the degenerate case k = 0, which is
discussed further in Lugt (1987), but is irrelevant here because it would involve more
than one separating streamline.
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4. Discussion
We have presented a simple, steady flow experiment which documents the transition

from unseparated to separated flow. The two flows are radically different, in that the
latter permits (coloured) water from the tube to enter the reservoir, while with
the former flow, the fluid in the reservoir remains virtually undisturbed. However,
the transition is gradual to a certain degree, in that close to a critical Reynolds
number the penetration depth d becomes large. It is difficult to be certain about
the order of the transition, i.e. whether d actually diverges at Rec, but this question
deserves further attention. To assess the role of a possible contamination of the water
surface, we have also performed preliminary experiments with 0.2 % weight of the
surfactant SDS (sodium dodecyl sulphate) added to the water. SDS has a significant
surface activity, and reduces the surface tension to about half the value of pure water
at this concentration. However, within the scatter of our data, there is no change
in the critical flow rate at which transition to jetting occurs. This indicates that the
purity of the water surface is not critical for our experimental results. However, it
might still be worthwhile to perform more experiments with a non-polar fluid, which
guarantees a much cleaner interface (Zenit & Magnaudet 2008).

It has been proposed by Leal (1989) that a local condition for the appearance of
separation is that the surface vorticity has reached a certain critical value. According
to (3.5) it would be enough (apart from recording the free surface shape) to measure
the surface velocity in order to test this hypothesis. However, since we show that at
separation the surface vorticity is actually zero, the criterion is not straightforward
to apply. In view of the simplicity of the geometry, numerical simulations would also
be well feasible. A slight conceptual problem associated with the present experiment
is that a certain amount of vorticity is generated in the tube which feeds the flow.
However, the maximum vorticity in the tube scales like U/R, and we have checked
that for all values of Re considered, the flow is a fully developed Poiseuille flow
at the tube outlet. The fact that our data collapse as function of Re = UR/ν is
thus an indication that this vorticity injection does not play a major role. Numerical
simulations would also be of great value in examining the issue of reattachment at high
Reynolds numbers, since non-deformable, ideally free interfaces can be implemented
theoretically but are difficult to approximate experimentally.

We owe the inspiration for this work to our late colleague Howell Peregrine. We
are grateful to Maurice Rossi for helpful conversations and for pointing out Lugt’s
work to us.
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